
ALL THAT WE LET IN:
HACKING 30 MOBILE HEALTH APPS
AND APIS

According to Mobius MD, there are now over 318,000 mHealth apps
available in major app stores. Over 60 percent of people have
downloaded an mHealth app, which is now more common of a
smartphone activity than online banking, job searches, or accessing
schoolwork or educational content (Pew Research, 2015). With the
pandemic pushing more patients towards virtual visits with their
family physician and mental health provider, hackers have begun
shifting their attention to this new attack surface in search of
protected healthcare information (PHI) which is now demanding
more of a payout per record than credit card numbers on the dark
web.

Summary
This paper details the results of a 6-
month long vulnerability research
campaign into the compromise of 30
mobile health apps and APIs to
demonstrate a systemic lack of
hardening of mHealth apps and APIs to
sufficiently secure protected
healthcare information (PHI).

Author Information
Alissa Valentina Knight
Partner
Knight Ink
1980 Festival Plaza Drive
Suite 300
Las Vegas, NV 89135
ak@knightinkmedia.com

Publication Information
This white paper is sponsored by
Approov.

Initial Date of Publication:
February 03, 2021
Revision: 1.0

TABLE OF CONTENTS

06 15 17
§ Key Points
§ Introduction

§ APIs and Microservices§ The Rise of Mobile Health

2 ALL THAT WE LET IN

3HACKING 30 MOBILE HEALTH APPS AND APIS

TABLE OF CONTENTS

20 21
§ API Security
§ Authenticating Requests
§ Authorizing Requests

§ How APIs Are Breached
§ Broken Object Level Authorization

23
§ The Research
§ Tactics, Techniques, and

Tools
§ Company Profiles
§ Mobile Applications

TABLE OF CONTENTS

28 30
§ The Findings
§ Mobile Applications
§ APIs

§ The Solution
§ Understanding Synthetic Traffic
§ Shift-Left Security
§ Perform Penetration Testing
§ Certificate Pinning

33
§ Peer Reviewed Evidence
§ Exhibit A
§ Exhibit B
§ Exhibit C
§ Exhibit D
§ Exhibit E
§ Exhibit F
§ Exhibit G
§ Exhibit H
§ Exhibit I
§ Exhibit J
§ Exhibit K
§ Exhibit L
§ Exhibit M
§ Exhibit N
§ Exhibit O

4 ALL THAT WE LET IN

5HACKING 30 MOBILE HEALTH APPS AND APIS

TABLE OF CONTENTS

46 48
§ Conclusion § Sources

50
§ About the Author
§ About Knight Ink

KEY POINTS

This section outlines the salient points
from this paper. While it’s my hope you’ll
read this paper in its entirety, this section
attempts to summarize this paper’s key
points and research findings but should
not be considered all encompassing.

§ This paper was written for chief
information security officers (CISOs)
and cybersecurity engineers who want
to better understand the tactics,
techniques, and procedures (TTPs)
adversaries use to breach these APIs
and mHealth apps that lead to PHI
data leaks.

§ Thirty mHealth apps and APIs were
tested in this research through the
cooperation of multiple companies
who agreed to participate so long as
none of the findings were attributed
to their company.

§ The purpose of this research is to
prove through empirical data, the risk
vulnerabilities in mHealth apps and
APIs pose to mHealth companies and
the PHI of patients they safeguard.

§ Out of all thirty mHealth apps tested,
77% contained hardcoded API keys,
some which don’t expire, and 7% even
contained hardcoded usernames and
passwords. 7% of the API keys
belonged to third-party payment
processors that warn about hard-
coding their secret keys in plain text.

§ According to Experian, a social
security number will cost $1, a credit
card up to $110, but full medical
records can cost up to $1,000 per
record. (Experian, 2017) [3].

§ Out of the API endpoints tested, 100%
of them were vulnerable to Broken
Object Level Authorization (BOLA)
attacks leading to unauthorized access
to full patient records, downloadable
lab results and x-ray images, blood
work, allergies, and personally
identifiable information (PII) including
home addresses, family member data,
birthdates, and social security
numbers.

§ Shift-left security should not be
considered a panacea. Rather,
combining shift-left security with
shield-right to prevent synthetic traffic
from reaching APIs.

§ Generally speaking, APIs are an
intermediary between applications
that defines how they can talk to one
another, decoupling the consuming
application from the infrastructure.

§ Some of the largest companies
involved in this research range from
$600 Million to $8 Billion in annual
revenues with diluted earnings per
share (EPS) of $.50 to $3.00 and NET
Operating Cash Flow of $1 Billion to
$3 Billion. The average number of
employees for all companies tested
was 15,000.

§ The average number of downloads for
each app tested was 772,619. Each
app combined capabilities of allowing
clinicians to review their schedule,
patient lists, and patient charts.

§ The findings demonstrate that the
security standards required for
compliance with US government
FHIR/SMART standards merely
represent a subset of the steps
needed to secure mobile apps and the
APIs which enable apps to retrieve
data and interoperate with data
resources and other applications.

6 ALL THAT WE LET IN

Mobile Apps
• 27% of the apps tested were not

secured against reverse engineering
through code obfuscation

• 77% of the apps tested contained
hard-coded API keys, tokens, private
keys, and hard-coded usernames and
passwords (Exhibit D)

• 100% of the apps tested failed to
implement certificate pinning,
enabling me to be able to perform
woman-in-the-middle attacks against
the app (Exhibit J)

• 114 hardcoded API keys and tokens
were found for authenticating with
the mHealth company and third-party
APIs

• API keys and tokens were discovered
for Google, Branch.io, Braze, Tune,
Optimizely, Cisco Umbrella, Microsoft
App Center, Bugsnag, Contentful,
Stripe, Amazon AWS, Radaee,
Sendbird, AppsFlyer, Facebook,
Vonage, SalesForce, Mparticle

• 7% of the apps tested contained
hardcoded keys for third-party
payment processors (Exhibit D)

• 63% of the apps contained hardcoded
private keys

APIs
• 50% of the APIs tested allowed me to

access the pathology, x-rays, and
clinical results of other patients
(Exhibit N, Exhibit O, Exhibit P)

• 50% of the APIs tested allowed me to
access admissions records for patients
being admitted into the hospital as in-
patients that I shouldn’t have been
able to access with my level of
authorization

• 100% of the APIs tested were
vulnerable to Broken Object Level
Authorization (BOLA) vulnerabilities

• BOLA vulnerabilities in 100% of the
APIs tested allowed me to view the
personally identifiable information
(PII) and protected healthcare
information (PHI) for patients that
were not assigned to my clinician
account

• 50% of the APIs tested did not
authenticate requests with tokens

• 50% of the records accessed
contained names, social security
numbers, addresses, birthdates,
allergies, medications, and other
sensitive data for patients

• A replay vulnerability allowed me to
replay days-old FaceID unlock
requests that allowed me to take over
other users’ sessions

7HACKING 30 MOBILE HEALTH APPS AND APIS

KEY POINTS: STATISTICS

THE FACTS ON VULNERABILITIES IN

MOBILE HEALTH
APPS AND APIS

SOURCES: KNIGHT INK, LLC
RESEARCHER: ALISSA V. KNIGHT
WEB: WWW.KNIGHTINKMEDIA.COM
EMAIL: INFO@KNIGHTINKMEDIA.COM

DOWNLOAD THE WHITE PAPER AT
WWW.APPROOV.IO/MHEALTH/HACKING

RESEARCH SPONSORED BY:
OFFICE:
1980 FESTIVAL PLAZA DR
SUITE 300,
LAS VEGAS, NV 89135

THE FACTS ON VULNERABILITIES IN

MOBILE HEALTH
APPS AND APIS

SOURCES: KNIGHT INK, LLC
RESEARCHER: ALISSA V. KNIGHT
WEB: WWW.KNIGHTINKMEDIA.COM
EMAIL: INFO@KNIGHTINKMEDIA.COM

DOWNLOAD THE WHITE PAPER AT
WWW.APPROOV.IO/MHEALTH/HACKING

RESEARCH SPONSORED BY:
OFFICE:
1980 FESTIVAL PLAZA DR
SUITE 300,
LAS VEGAS, NV 89135

THE FACTS ON VULNERABILITIES IN

MOBILE HEALTH
APPS AND APIS

SOURCES: KNIGHT INK, LLC
RESEARCHER: ALISSA V. KNIGHT
WEB: WWW.KNIGHTINKMEDIA.COM
EMAIL: INFO@KNIGHTINKMEDIA.COM

DOWNLOAD THE WHITE PAPER AT
WWW.APPROOV.IO/MHEALTH/HACKING

RESEARCH SPONSORED BY:
OFFICE:
1980 FESTIVAL PLAZA DR
SUITE 300,
LAS VEGAS, NV 89135

INTRODUCTION

As of 2018, 84,000 app publishers were
responsible for publishing approximately
318,000 mobile health (mHealth) apps
available in the app marketplaces which
have enjoyed annual downloads of over
3.7 Billion (Research2Guidance, 2017)
[1]. This number has certainly increased
since 2020, especially in this post-
pandemic world where mHealth is quickly
becoming the new norm for those
needing to see their family physician or
mental health professional without
leaving their house. Just as a picture is
worth a thousand words, numbers also
speak volumes. According to a report
published in April of 2020 by Reports and
Data, the global mobile health market is
forecasted to reach $311.98 Billion by
2027.

With so many mHealth apps collecting
millions of protected healthcare
information (PHI) records globally, a
massive data lake of monetizable data is
being generated. This growing attack
surface is quickly drawing the attention
of transnational crime syndicates wanting
to lock-and-leak it in order to extort
payments from its data owners and sell it
to the highest bidder.

The shores of these massive data lakes
are lined with APIs ready to serve it to
requesting API consumers. However, how
can mHealth companies know that the
requestor is the legitimate mHealth app
they created or synthetic requests
generated by a tool?

This paper was written for chief
information security officers (CISOs) and
cybersecurity engineers who want to
better understand the tactics,
techniques, and procedures (TTPs)
adversaries use to breach these APIs and
mHealth apps that lead to PHI data leaks.

In 2019, I published a revealing report on
the financial services and fintech industry
after finding systemic vulnerabilities in 30
financial services and fintech mobile
apps. [2] However, in that research, I
stopped at the static code analysis and
didn’t target the APIs of the apps due to a
lack of approvals.

In this year’s research, I’ve downloaded
30 mHealth apps and partnered with
some of the world’s largest mHealth
manufacturers in a coordinated
partnership to perform penetration
testing of their mobile apps and APIs. The
purpose of this research is to prove
through empirical data, the risk that
vulnerabilities in mHealth apps and APIs
pose to the business and the PHI of
patients they safeguard.

As a CISO or security engineer for a
mHealth company, your attack surface
extends across two separate beachheads,
the mHealth mobile app and every API
endpoint it communicates with. Some
organizations involved in this research
had well over 1,000 APIs serving their
applications. Whereas some CISOs enjoy
the luxury of only having a perimeter that
extends to the end of their ISPs
demarcation point, your edge extends to
every mobile device your mHealth app is
installed on.

11 ALL THAT WE LET IN

Out of all thirty mHealth apps tested,
77% contained hardcoded API keys, some
of the tokens don’t expire, and 7% even
contained hardcoded usernames and
passwords. 7% of the exposed API keys
belonged to third-party payment
processors that warn about hard-coding
their secret keys in plain text in their API
documentation.

Out of the API endpoints tested, 100% of
them were vulnerable to Broken Object
Level Authorization (BOLA) attacks
leading to unauthorized access to full
patient records, downloadable lab results
and x-ray images, blood work, allergies,
and personally identifiable information
(PII) including home addresses, family
member data, birthdates, and social
security numbers.

It's clear from the data collected, why
there is such a high premium for PHI
above the cost of credit card numbers on
the dark web marketplaces. Simply put,
it’s a lot easier for a bank to send you a
new card because it’s been compromised
or refund any fraudulent charges, but it’s
a lot harder for someone to send you a
new identity or invalidate what was your
past medical history that is now for sale
on the dark web.

According to Experian, a social security
number will cost $1, a credit card up to
$110, but full medical records can cost up
to $1,000 per record. (Experian, 2017)
[3].

Despite the attempted protections put
into place on many of the apps, such as
reliance solely on JWT tokens,
geolocation binding, and checks if the

app is being run on a rooted/jailbroken
device, the attacks were still possible. All
of the APIs tested failed to implement
certificate pinning, allowing me to insert
myself in the middle of the
communication a la a woman-in-the-
middle (WITM) attack after I logged in.

The type of attacks I performed in this
report did not require a jailbroken phone
and geolocation blocking was possible to
get around as well. JWT tokens were not
effective because of the attack vectors as
well as the absence of certificate pinning,
which will be explained later.

This report uncovers these vulnerabilities,
how they were exploited, and the
resulting evidence of these findings in
what I anticipate will be the most
controversial report on the healthcare
industry ever published. If you’ve never
been convinced because of a lack of
empirical evidence, that security needed
to shift-left in your organization, here is
your proof. But shift-left security should
not be considered a panacea. Rather,
Shift-left security should not be
considered a panacea. Rather, combining
shift-left security with shield-right to
prevent synthetic traffic from reaching
APIs.

Because the PHI records in these tests
were real, they have been redacted to
protect the sensitivity of the data. If any
of the screenshots in the annexes are
blurry, it isn’t because of a low-resolution
image. They were blurred intentionally in
order to protect the identity of the
patient’s record.

12HACKING 30 MOBILE HEALTH APPS AND APIS

13 ALL THAT WE LET IN

14HACKING 30 MOBILE HEALTH APPS AND APIS

THE RISE OF MOBILE HEALTH

The terms telehealth, telemedicine,
remote patient monitoring (RPM), and
mobile health (mHealth) are mistakenly
used interchangeably when in fact they
all encompass different things. Much like
machine learning is mistakenly conflated
with artificial intelligence when in fact it's
a subset of AI. mHealth is a subset of the
broad category of health technologies,
telehealth.

mHealth refers to the use of mobile
technology to achieve improved health.
As defined by the World Health
Organization (WHO), mHealth refers to
“use of mobile and wireless technologies
to support the achievement of health
objectives." [4]

In our new mobile economy where
people prefer a cell phone or tablet over
a laptop, mHealth represents a very
specific type of telehealth driven by our
new mobile app economy. Telehealth in
the broader sense refers to the use of
technology to improve healthcare
outcomes, while mHealth refers to the
specific use of mobile technology and
apps for patients to acquire their own
health information without the
intervention of a clinician. I, however,
subscribe to the more all-encompassing
definition of mHealth since there has
been no widespread agreement on just
what mHealth encompasses. As
described by InnovateMedTech,
“mHealth refers to the practice of
medicine and public health supported by
mobile devices such as mobile phones,
tablets, personal digital assistants and the

wireless infrastructure. Within digital
health, mHealth encompasses all
applications of telecommunications and
multimedia technologies for the delivery
of healthcare and health information that
caters to both clinicians and patients.” [5]

Accordingly, “there are different
categories of mHealth apps in the
market, to include symptom checkers,
clinical records management, self
monitoring, rehabilitation programs,
prescription filing, communication with a
patient’s doctor or mental health
professional, and more.

With so many different data categories of
patient data, it’s no wonder that almost
half (48%) of consumers now prefer to
take the control of their own health into
their hands with mHealth apps using
mobile devices and wearables as
compared to just 16% in 2014 according
to a 2018 report by Accenture. [5]

15 ALL THAT WE LET IN

16HACKING 30 MOBILE HEALTH APPS AND APIS

APIS AND MICROSERVICES

Behind every mHealth app on a mobile
device is a service translating each
request sent to it from the app called an
application programming interface (API).
The API is responsible for processing
every request from the mHealth app and
either providing the results of the request
to the app or inserting data from the app
into the backend database.

Generally speaking, APIs are an
intermediary between applications that
defines how they can talk to one another
-- decoupling the consuming application
from the infrastructure.

I’ll use the analogy of a restaurant to
better explain what an API is. When you
sit down and order food at a restaurant,
you’re making specific requests to the
waiter on what it is you want based on
the “options” in the menu. In our case,
you can think of yourself as the mHealth
app, the waiter (the API) and the menu is
the supported API options on what you
can request. The waiter then takes your
order to the kitchen (the database) and
retrieves your order from the chef, who
then brings it back to you.

There are different API architectures,
internal app-to-app and human-to-app
also referred to as the “last mile.”
Human-to-app architectures can be
considered many-to-one or many
humans/apps to one service. The latter
architecture was in scope of this research
and not the former as internal server-to-
server communication breaches assumes
a beach head or foothold on the internal

network. Additionally, internal
microservice to other microservices or
3rd party services are relatively few-to-
few which constrains the security
problem compared to the human to
service APIs.

17 ALL THAT WE LET IN

18HACKING 30 MOBILE HEALTH APPS AND APIS

19 ALL THAT WE LET IN

API SECURITY

In order to secure an API effectively, you
want to implement authentication and
authorization to ensure that whatever
application or device is sending an API
request has the right to do so
(authentication) and is allowed to read or
write the data (authorization).

Authenticating Requests
API requests can be authenticated a
number of ways. Unfortunately, some
authentication mechanisms are more
secure than others and while this is
widely known, insecure authentication
methods such as the use of Basic Auth or
API keys are still being used.

Types of authentication in APIs includes,
API keys, a long string of random
numbers and characters generated by the
API endpoint that grants access to
whomever passes it in the authorization
header of the request; Basic Auth where
a username and password are used to
authenticate an individual; JSON Web
Tokens (JWTs), and OAuth, which uses
tokens instead of sharing credentials;
OAuth2, which exchanges a username
and password for a token; SMART, which
is increasingly becoming an
implementation of OAuth in healthcare,
and OpenID Connect. There are also
other methods of authentication, such as
implementing MFA through third-party
solutions.

Authorizing Requests
Think of authentication simply as proving
who you are while authorization proves
you’re allowed to see the information

being requested. Just because you’re
authenticated, it doesn’t necessarily
mean you should be able to see the data
you’re requesting. For example,
requesting the patient records of another
patient instead of your own.

One of the most common methods of
implementing authorization in an API is
using Auth0. Per Auth0 documentation,
authorization can be determined through
the use of policies and rules, which can
be used with role-based access control
(RBAC). Regardless of whether RBAC is
used, requested access is transmitted to
the API via scopes and granted access is
returned in the issued Access Tokens.
[13]

20HACKING 30 MOBILE HEALTH APPS AND APIS

HOW APIS ARE BREACHED

Gartner predicts that by 2022, API abuses
will become the most common attack
employed against web applications. [7]
The three most common tactics and
techniques used by adversaries to breach
APIs affect authentication, authorization,
and availability.

For authentication attacks, adversaries
combine dumped credentials from
previous breaches in an account takeover
(ATO) style attack referred to as
credential stuffing where usernames and
passwords are sent to the API until a
successful authentication is established.
This is also called brute forcing.

The next type of attacks against APIs
affects authorization vulnerabilities.
Simply authenticating an API with either a
legitimate account or with an API key or
token, doesn’t mean that the individual is
authorized to read or write the data. An
example of an authorization vulnerability
is number one on the OWASP API Top 10
list, Broken Object Level Authorization
(BOLA). This vulnerability is also referred
to as Insecure Direct Object Reference
(IDOR) whereupon a successfully
authenticated API request asks to read or
write data that doesn’t belong to the
authenticated user. For example, a
patient being able to request the patient
records of another patient from the API
endpoint.

The third type of attack affects
availability of the endpoints using a
Denial of Service (DoS) attack. A DoS
attack renders the API endpoint unusable
for legitimate requests by overloading
the API endpoint with synthetic API

requests in order to knock it offline.
While some DoS and Distributed Denial of
Service (DDoS) attacks are volumetric in
nature (overwhelming the API endpoints
with more requests than they can
handle), many of the DoS attacks simply
exploit bugs in the API endpoint that can
also render it unable to respond to new
requests.

In this research, all of the APIs tested
were vulnerable to BOLA attacks, which is
demonstrated in the findings section of
this report and accompanying video.

Broken Object Level Authorization
It should come as no surprise that the
BOLA vulnerability made the 1st place
position in the OWASP API Top 10 list.
BOLA vulnerabilities have now become
the most popular and widely seen
method of API abuses in the wild.

Simply put, a BOLA vulnerability enables
an adversary to substitute the ID of a
resource with the ID of another. When
the object ID can be directly called in the
URI, it opens the endpoint up to ID
enumeration that allows an adversary the
ability to read objects that don’t belong
to them. These exposed references to
internal implementation objects can
point to anything, whether it’s a file,
directory, database record, or key.

For example:

Substituting patientID 1001 in ‘GET
/patients/1001/lab_results’ with ID 2001
in ‘GET /patients/2001/lab_results’

21 ALL THAT WE LET IN

1

1
All That We Let In: Hacking mHealth Apps and APIs: https://alissaknight.co/hacking_mhealth_trailer

THE

PREVENTING THE EXPLOITATION OF THE NEW WORK FROM HOME ECONOMY

RESEARCH
TRANSPARENT DEDUCTION OF RESULTS & DETAILED
DESCRIPTION OF METHODS USED

22HACKING 30 MOBILE HEALTH APPS AND APIS

THE RESEARCH

In this section, I present the company
profiles of the mHealth companies who
participated in this research with me
without directly identifying the
companies or their apps.

In addition to the company profiles, I also
present the static code analysis results of
the mobile apps and the exploitation of
vulnerabilities found in the API endpoints.

Initially, I present the findings from the
API endpoints not secured with Approov,
the company that sponsored this
research. Then, I demonstrate the
efficacy of the Approov solution using the
same tactics and techniques I used to
exploit them.

Please note. While I understand the
sensitivity of the empirical data I’m
unveiling in this report and its potential
impact on the healthcare industry, none
of the findings are attributable to the
actual companies who participated in the
research.

Tactics, Techniques, and Tools
Each mHealth app was reverse
engineered using Mobile Security
Framework (MobSF), an open source
security framework designed to
automate the static and dynamic code
analysis of mobile applications,
supporting APK and IPA file formats as
well as zipped source code.

MobSF is a layered framework of
different tools, one of which is apktool.
Apktool handles decompiling and
decoding of the compiled sources in an
APK file. Know that an APK file is nothing
more than a compressed zip file of
resources and assembled java code.

Every APK will contain three files at a
minimum:
• AndroidManifest.xml, which defines

permissions for the application;
• classes.dex, which contains all the

Java class files; and
• resources.arsc, which contains the

meta-information about the
resources and nodes. [8]

Once imported into MobSF, I then used
grep combined with a number of
different regular expression (REGEX)
patterns at the command line against the
MobSF uploads directory to find
hardcoded secrets.

Once static code analysis was completed,
I then targeted the APIs the mobile apps
communicate with. In order to better
understand how the APIs worked, I
performed network interdiction with the
apps using a stack of different tools,
including Mitmproxy, Postman, and Burp
Suite Pro that were configured with self-
signed certificates in order to decrypt the
SSL/TLS traffic used by the mobile apps.
This was possible because the mHealth
companies failed to implement pinning.

For penetration testing of the APIs, two
separate applications were used. For
creating custom API requests, I used
Postman and for intercepting the mobile
app traffic and replaying it to the APIs
modified, I used Burp Suite Pro.

The perspective of the attacker in this
research is access from the Internet
requiring no internal access or beach
head on the target network.

Figure 1 illustrates the attack lab
setup/architecture.

23 ALL THAT WE LET IN

Figure 1. API Attack Lab Architecture

Source: Knight Ink

API Gateway

24HACKING 30 MOBILE HEALTH APPS AND APIS

Company Profiles
Numerous companies opened their
mHealth APIs up for testing out of the 30
mobile apps tested.

The mHealth apps and APIs tested are
leading suppliers of health care
information technology ("HCIT") solutions
and tech-enabled services. Participating
company demographics include the
United States, Europe, Asia, and South
America. The mHealth apps combine
clinical, financial, and administrative
information management applications,
including tools for managing electronic
health records (EHRs) for patients and
clinicians.

Some of the largest companies targeted
in this research range from $600 Million
to $8 Billion in annual revenues with
diluted earnings per share (EPS) of $.50
to $3.00 and NET Operating Cash Flow of
$1 Billion to $3 Billion. The average
number of employees for all companies
tested was 15,000.

Mobile Application Profiles
The average number of downloads for
each app tested was 772,619. Each app
combined capabilities of allowing
clinicians to review their schedule,
patient lists, and patient charts.

Additionally, some apps enabled
clinicians to manage physician handoffs,
access patient demographics and photos,
and manage transfer of patient care
between providers. Some apps allowed
clinicians to review, add, and modify

patient histories, problems, and allergies.

Clinician accounts could review radiology
reports, clinical results, and pathology
reports and were also able to create and
edit prescribed medications and review
prescription orders and other medication
history for assigned patients as well as
enable patients to connect with board-
certified doctors for phone or video visits
and request and fill prescriptions by their
doctors.

Patient accounts were able to create and
update their entire medical history as
well as maintain a record of all medical
information, clinical and pathology
reports, x-rays, and other pertinent
protected healthcare information (PHI)
for the patient.

All of this data was accessible to me by
exploiting BOLA vulnerabilities in the
APIs.

Many of the apps included access to not
just medical physicians, but also
psychologists, psychiatrists, and other
mental health therapists who were also
able to prescribe medications including
anti-psychotics and even integrated with
Apple HealthKit allowing patients to take
and record vital health information, such
as blood pressure and heart rate.

25 ALL THAT WE LET IN

In addition to mobile API testing, I also
tested APIs built on the open Fast
Healthcare Interoperability Resources
(FHIR) (pronounced fire) standards
framework.

FHIR was built by the Health Level Seven
International (HL7) healthcare standards
organization to provide for the exchange
of electronic health records (EHR). These
types of APIs are partner-facing, allowing
third-party companies to develop mobile
apps for their FHIR APIs.

The power behind FHIR is its ability to
allow mHealth companies to expose
discrete data elements as services via a
RESTful API protocol acting as a translator
between legacy healthcare systems and
healthcare providers and individuals and
their mobile devices built by third-party
developers. One common integrator into
FHIR APIs is the well-known personal
health app, Apple Health. This EHR data
can include patient and admissions
records, diagnostic reports, and
medications. [9]

26HACKING 30 MOBILE HEALTH APPS AND APIS

THE
THE PRIMARY RESEARCH FINDINGS WITHOUT BIAS OR
INTERPRETATION.

2
7

PREVENTING THE EXPLOITATION OF THE NEW WORK FROM HOME ECONOMY

FINDINGS

27 ALL THAT WE LET IN

THE FINDINGS

Mobile Applications
This section details the findings of the
static code analysis of the mobile apps
without bias or interpretation. Any
findings from the static code analysis
were then carried-over and used in the
API findings when possible. Examples of
this information to complete the kill chain
was the discovery of hard-coded
credentials or API keys and tokens inside
the mobile apps.

Findings Summary:
Mobile Apps
• 27% of the apps tested were not

secured against reverse engineering
through code obfuscation

• 77% of the apps tested contained
hard-coded API keys, tokens, private
keys, and hard-coded usernames and
passwords (Exhibit D)

• 100% of the apps tested failed to
implement certificate pinning,
allowing me to perform woman-in-
the-middle attacks against the app
(Exhibit J)

• 114 hardcoded API keys and tokens
were found for authenticating with
the mHealth company and third-party
APIs

• API keys and tokens were discovered
for Google, Branch.io, Braze, Tune,
Optimizely, Cisco Umbrella, Microsoft
App Center, Bugsnag, Contentful,
Stripe, Amazon AWS, Radaee,
Sendbird, AppsFlyer, Facebook,
Vonage, SalesForce, Mparticle

• 7% of the apps tested contained
hardcoded keys for third-party
payment processors (Exhibit D)

• 63% of the apps contained hardcoded
private keys

APIs
• 50% of the APIs tested allowed me to

access the pathology, x-rays, and
clinical results of other patients
(Exhibit N, Exhibit O, Exhibit P)

• 50% of the APIs tested allowed me to
access admissions records for patients
being admitted into the hospital as in-
patients that I shouldn’t have been
able to access with my level of
authorization

• 100% of the APIs tested were
vulnerable to Broken Object Level
Authorization (BOLA) vulnerabilities

• BOLA vulnerabilities in 100% of the
APIs tested allowed me to view the
personally identifiable information
(PII) and protected healthcare
information (PHI) for patients that
were not assigned to my clinician
account

• 50% of the APIs tested did not
authenticate requests with tokens

• 50% of the records accessed
contained names, social security
numbers, addresses, birthdates,
allergies, medications, and other
sensitive data for patients

• A replay vulnerability allowed me to
replay days-old FaceID unlock
requests that allowed me to take over
other users’ sessions

• 100% of the accessible records
included admissions records for the
hospitals of all processed in-patients

28HACKING 30 MOBILE HEALTH APPS AND APIS

THE SOLUTION
Organizations who hire developers to
write code need to invest in secure code
training for their developers. It’s an
absolute imperative that security shift-
left in the software development life
cycle instead of waiting until the code is
pushed to the app store or placed into
production. While many organizations
invest in requiring security awareness
training from all employees, separate
training modules should be purchased for
developers to help them write more
secure code.

In addition to training, solutions which
add security without changing
development flows are most likely to be
embraced by product teams. Tooling such
as Approov's API threat protection is a
SDK and cloud service providing
frictionless enablement of their security
solution. Approov ensures that traffic
destined for the organization’s API is
indeed coming from the legitimate
mobile app and not a third-party tool.
This ensures synthetic traffic generated
by account takeover (ATO) tools and
other API clients, such as Postman or
Burp Suite, are blocked.

One of the most common answers I got
when asking organizations why they
didn’t implement certificate pinning is
because of their fear that every deployed
app will become bricked should a
certificate expire. Approov provides easy
administration for certificate
management when its pinning is enabled,
eliminating the concern over bricked
apps when problems arise with a
certificate.

When Approov was turned on against a
target API, I wasn’t even able to
communicate with the API because the
API requests weren’t originating from the
app compiled with their SDK. It’s my

opinion that the Approov solution is
effective in preventing the types of
attacks used in this research.

Code obfuscation can be implemented to
prevent the discovery of keys and tokens
after decompiling the apps, but it
shouldn’t be seen as a panacea as even
obfuscated code can be deobfuscated.
Keys and tokens can be discovered when
using a WITM technique if pinning is not
enabled as demonstrated in this
research.

Understanding Synthetic Traffic
Synthetic traffic is traffic generated by a
tool versus traffic generated by human
interaction with the approved app. For
example, an ATO tool designed to spray
an API with stolen credentials, brute
forcing the API until a successful login
occurs. Human traffic is traffic generated
by a human, such as a legitimate patient
using the mHealth app to request their
clinical reports or x-rays.

A mobile app compiled with Approov
arms the app with a dynamic challenge-
response integrity measurement
protocol, which does not require secrets
to be stored in the app -- an advanced
DNA test of the app f you will.

The difference between Approov and
traditional approaches is that Approov
makes an absolute accept/reject
decision, while these other tools 'guess'
that, statistically-speaking, something
isn't right. When guesses are wrong,
legitimate users can be falsely rejected.
AI can be added to make these tools
learn and adapt, hopefully making their
guesses a bit better and adaptive to
changing conditions, but they are still
statistical inferences which will not
always be right.

30HACKING 30 MOBILE HEALTH APPS AND APIS

Therefore, synthetic traffic can not only
cause security concerns for
confidentiality, integrity, and availability
of an API, but also can cause significant
costs to the organization in CPU and
network bandwidth, especially when
destined for cloud workloads.

Shift Left Security and Shield Right
In the parlance of DevOps and security,
shifting security left is the concept of
moving security to the earliest point in
the development process. This can not
only have positive outcomes from an IT
risk management perspective, but also a
cost perspective. According to the System
Sciences Institute at IBM, finding
vulnerabilities in the design phase of an
application is six times cheaper than
finding it in implementation. [10]

In order to implement cybersecurity
controls into the agile DevOps continuous
integration/continuous delivery (CI/CD)
process, automation is a business
imperative to ensure developers are able
to address user requirements
dynamically, release features
incrementally, and deliver at a faster
pace while maintaining confidentiality,
integrity, and availability throughout the
software development and deployment
lifecyle. (Cloud Security Alliance, 2020).
[11] However, as with all things covered
in this section, this is just one layer in the
multi-layered approach that should be
taken to securing your APIs.

Perform Penetration Testing
You must penetration test your own apps
and APIs before the app is placed into
production. Retain penetration testers
skilled in testing mobile applications (on

all platforms your app is available on) and
the APIs. Static and dynamic code
analysis should be performed regularly
along with the penetration testing.

Certificate Pinning
Pinning was introduced to address the
threat of WITM attacks whereupon an
unauthorized individual injects herself in
the middle of two talking endpoints in an
encrypted session.

Pinning tells the API it can only accept a
specific public key from an app. Any other
certificates are refused. By doing this, an
adversary attempting to perform a WITM
attack by presenting a self-signed
certificate to both endpoints would fail,
refusing to make the connection.

However, if done incorrectly or if you
need to change keys, certificates, issuers,
or your CA vendor, you must update and
push out a new version of your client or
all API requests will be blocked.

As a matter of fact, many vendors
discourage the use of pinning because
the potential to negatively impact
availability far outweighs the perceived
benefits. (Digicert, 2020) [12]

This is the primary reason a lot of
organizations I’ve spoken to, who fell
victim to my BOLA attacks, gave as as
reason for why they didn’t implement
pinning. The threat of bricking the app
because of an expired certificate or other
issue was greater than the perceived
threat to them of a WITM attack
occurring against their app.

31 ALL THAT WE LET IN

Approov in Action
During the research, Approov was
enabled on one of the hospital’s that
partnered with me in the research.

I used the same tactics and techniques
used in this research to breach the target
APIs. 100% of the techniques failed
against the API as a result of me
communicating from a script and not
from a genuine app instance which had
been registered with the solution.
(Exhibit Q)

The efficacy of Approov’s solution was
measured based on the ability to breach
the target APIs by attempting to send the
same exact API requests that allowed
unauthorized access to the same APIs
without Approov enabled. The success
rate of Approov in being able to detect
and prevent the unauthorized API
requests was 100%.

The tools used to employ these
techniques to exploit the identified BOLA
vulnerabilities were prevented from
being able to successfully reach the API.

To proceed further, we temporarily
disabled Approov pinning protection for
my device. I then logged in with the
WITM proxy turned off and was able to
get an initial valid Approov token, which
was only good for five minutes. This
allowed me to check the API for
vulnerabilities, such as BOLA. After that,
when turning on Mitmproxy or Burp
Suite, my tests failed, due to me receiving
bad tokens with a status of either

NO_NETWORK or MITM_DETECTED.

With pinning enabled, even if there was a
BOLA weakness, Approov would prevent
it from being exploited because a BOLA
attack could only be made from an
artificial source or a tampered app -
neither of which would be 'approoved’.

While some Approov customers
implement the error responses
differently, the hospital who partnered
with me in this research decided not to
accept my API calls when they don't get a
good status returned from an Approov
token fetch.

32HACKING 30 MOBILE HEALTH APPS AND APIS

PEER REVIEWED
THE PRIMARY RESEARCH EVIDENCE

3
3

PREVENTING THE EXPLOITATION OF THE NEW WORK FROM HOME ECONOMY

EVIDENCE

33 ALL THAT WE LET IN

Exhibit A. Accessing the patient clinical and pathology reports for a patient not assigned to my
clinician account through a BOLA vulnerability by changing the filename in the URI.

Source: Knight Ink

Evidence Explanation
Here, we see a modified API request sent to the API endpoint for a different filename in an attempt to
access clinical reports for other patients. Because of the BOLA vulnerability, I was able to specify a
different patient’s report (8422946.pdf). Postman allows you to save results like this to a file to be
viewed by an external application. I saved this result to a PDF and showed the redacted report in Exhibit
N. Another mistake made by the developer was that the filenames of the reports were set to auto-
increment allowing me to easily find other reports by simply incrementing or decrementing the
numbers in the filename.

34HACKING 30 MOBILE HEALTH APPS AND APIS

Exhibit B. Accessing the patient record of a patient not assigned to my clinician account by
changing the patientID in the URI.

Source: Knight Ink

Evidence Explanation
In this screenshot, I’m using Burp Suite to exploit another BOLA vulnerability in the patientID parameter
to access other patient records not assigned to my clinician’s account. The field (marked with a red
arrow) can be modified to any number corresponding to a specific patient. The records from this
endpoint contain admissions records for the hospital, providing a simple status of whether they are
currently an in-patient or have been discharged and the reason for their visit.

35 ALL THAT WE LET IN

Exhibit C. Replay attack allowing me to unlock a previously locked session days before by replaying
the Apple FaceID authentication packet. SECRET parameter was the same across all packets. I was
then able to replay all other API requests following that had session locks.

Source: Knight Ink

Evidence Explanation
This evidence provides proof of session takeover. I was able to replay the session unlock request to the
API, unlocking a previously locked session. This request is generated by an iPhone when the user uses
FaceID to unlock the phone. Upon closer look, I noticed the secret key in the unlock request is the same
in every single unlock request.

36HACKING 30 MOBILE HEALTH APPS AND APIS

Exhibit D. Hardcoded keys found by MobSF in mHealth apps after the decompiling process.

Source: Knight Ink

Evidence Explanation
This is evidence of hardcoded keys found in one of the apps using MobSF. This shows what little
sophistication is needed and how quickly an adversary can find hardcoded API keys and tokens in an
app, even with a pretty graphical user interface (GUI).

37 ALL THAT WE LET IN

Exhibit E. Hardcoded keys found in all mHealth apps after being decompiled in MobSF at the
command line using ‘grep’ for keyword ’api_key’.

Source: Knight Ink

Evidence Explanation
In this screenshot, I’m using different queries with grep to find keys and tokens across all of the apps.
When an app is imported into MobSF, it places the decompiled app into its own sub-folder in the
<MobSF_root>/uploads folder. This makes searching for specific keywords across all apps trivial as an
alternative to using the GUI. Also, MobSF makes a best attempt at finding hardcoded keys. By using
grep combined with regular expressions (REGEX), I was able to find other keys and tokens as well as
credentials that MobSF missed.

38HACKING 30 MOBILE HEALTH APPS AND APIS

Exhibit F. BOLA vulnerability found allowing me to see all patients admitted into the hospital.

Source: Knight Ink

Evidence Explanation
Here I’ve modified the API request and because of a BOLA vulnerability was able to pull up a list of all
patients matching a specific query from the admissions records of the hospital.

39 ALL THAT WE LET IN

Exhibit G. Hundreds of keys and tokens discovered using multiple ‘grep’ queries against all apps
after being decompiled by MobSF.

Source: Knight Ink

Evidence Explanation
Here is more evidence of hardcoded keys and tokens found in the decompiled apps folder of MobSF. As
you can see, keys for not only the mHealth company were found, but also keys for third-parties, such as
payment processors and cloud service providers.

40HACKING 30 MOBILE HEALTH APPS AND APIS

Exhibit H. More keys discovered hardcoded within specific files missed by MobSF.

Source: Knight Ink

Evidence Explanation
MobSF provides a separate screen for what it believes may be hardcoded keys and passwords found in
files that don’t show up in the hardcoded keys section of the page. This is a screenshot of one of the
files found in one of the apps BuildConfig.java. This file contained numerous keys for third-party sites.

41 ALL THAT WE LET IN

Exhibit I. Attempting different ‘grep’ queries to find more hardcoded keys and tokens missed by
MobSF

Source: Knight Ink

Evidence Explanation
Here I’m attempting more grep queries with different keywords, this time with _secret. I’ve also
provided a screenshot of another file OAuth2ClientConstants.java from the MobSF GUI of more API
secrets it discovered in the file.

42HACKING 30 MOBILE HEALTH APPS AND APIS

Exhibit J. Mitmproxy possible due to absence of certificate pinning with the API.

Source: Knight Ink

Evidence Explanation
In this screenshot, you see the Mitmproxy interface. Because of the absence of pinning on this API, I
was able to perform a WITM attack allowing me to decrypt the SSL encrypted traffic from the app and
better understand what queries the API supports. This type of reconnaissance is a common step I take
as “intelligence collection” when I perform an API penetration test.

43 ALL THAT WE LET IN

Exhibit K. BOLA vulnerability found allowing me to see any patient record not assigned to my
clinician account.

Source: Knight Ink

Evidence Explanation
This is a screenshot of Postman where I’m able to create API requests from scratch, using parameters
grabbed from the WITM technique used with Mitmproxy. This screenshot shows patient data for a
patient who was admitted into the hospital and is currently staying, not yet discharged. Notice the
information also contains PII for family members. What can’t be seen here is if scrolling down, the
information for the mother and other family members was also stored in the server.

44HACKING 30 MOBILE HEALTH APPS AND APIS

Source: Knight Ink

Exhibit L. BOLA vulnerability found allowing me to see any patient record not assigned to my
clinician account admitted by hospital admissions

Evidence Explanation
In this screenshot, I’m exploiting a BOLA vulnerability to pull up other patient records by simply
modifying the patientID field. Notice the /2 on the endpoint query. Changing this number to any other
number pulls up the corresponding patient in the database.

45 ALL THAT WE LET IN

Source: Knight Ink

Exhibit M. BOLA vulnerability found allowing me to see any patient record not assigned to my
clinician account admitted by hospital admissions.

Evidence Explanation
Another screenshot where I’ve modified the endpoint query to reflect patient 100 instead to pull up
the PII for another patient admitted into the hospital.

46HACKING 30 MOBILE HEALTH APPS AND APIS

Source: Knight Ink

Exhibit N. BOLA vulnerability allowing access to any PDF report for any patient not assigned to my
clinician account.

Evidence Explanation
This PDF was downloaded using the SAVE FILE feature in Postman. Once I had exploited a BOLA
Vulnerability in the filename field, I was able to save any file sent back to me of any filename I specified,
save it to a PDF, then view it within Preview on my Mac.

47 ALL THAT WE LET IN

Source: Knight Ink

Exhibit O. BOLA vulnerability allowing access to any PDF report for any patient not assigned to my
clinician account.

Evidence Explanation
This PDF was downloaded using the SAVE FILE feature in Postman. Once I had exploited a BOLA
Vulnerability in the filename field, I was able to save any file sent back to me of any filename I specified,
save it to a PDF, then view it within Preview on my Mac.

48HACKING 30 MOBILE HEALTH APPS AND APIS

Source: Knight Ink

Exhibit P. BOLA vulnerability allowing access to any PDF report for any patient not assigned to my
clinician account.

Evidence Explanation
This PDF was downloaded using the SAVE FILE feature in Postman. Once I had exploited a BOLA
Vulnerability in the filename field, I was able to save any file sent back to me of any filename I specified,
save it to a PDF, then view it within Preview on my Mac.

49 ALL THAT WE LET IN

Source: Knight Ink

Exhibit Q. Evidence of being unable to communicate with the API server after Approov was
enabled on the target API.

Evidence Explanation
In this screenshot, you can see repeated 400 errors as my client made attempts to fetch a new valid
Approov token (Error 400).

50HACKING 30 MOBILE HEALTH APPS AND APIS

51 ALL THAT WE LET IN

CONCLUSION
AUTHOR’S FINAL
THOUGHTS

5
2

PREVENTING THE EXPLOITATION OF THE NEW WORK FROM HOME ECONOMY 52HACKING 30 MOBILE HEALTH APPS AND APIS

CONCLUSION

In 2019, I hacked a large European bank
who partnered with me in the research
and posted a video of it on YouTube. In
that attack, I used a BOLA vulnerability
that allowed me to specify any bank
customer’s ATM debit card number and
account number to perform money
transfers and change pin codes.

BOLA vulnerabilities are the most
prevalent vulnerability I’ve found in APIs.
In every single API I’ve breached, I
exploited a BOLA vulnerability to gain
unauthorized access to data, insert data
into the backend database, or take
control of the device or automobile.

The results from this research were
produced from two weeks of API testing
and 6 months of static code analysis. The
number of hardcoded keys and tokens in
these mHealth apps, not just to the
mHealth company’s APIs, but also third-
party payment processors, was
astonishing. Basic cybersecurity hygiene,
such as not hard coding usernames and
passwords in source code and authorizing
all requests is an endemic problem in
mHealth.

mHealth companies need to implement
more of a zero-trust approach to the
security of their apps and APIs, ensuring
that just because someone is
authenticated doesn’t necessarily mean
they are authorized to access the data. In
some cases, tokens without a lifetime set
were used to authenticate requests
allowing for replay attacks of those API
requests.

Combining this with BOLA vulnerabilities
allows anyone, with or without an
account, to request PHI for any patient
for an unlimited amount of time because
of a lack of expiration periods on tokens
in many of the apps.

mHealth companies must do better,
especially when it comes to our most
sensitive personal health information.
The lack of security controls and insecure
code writing left me stunned as I
completed this research. There is a clear
lack of static code analysis and
penetration testing that would have
mitigated many of the “low hanging fruit”
issues I discovered.

While I’m a big proponent of shift-left
security and practicing good
cybersecurity hygiene, it’s just one of the
hardening steps that should be taken to
secure your APIs. The Approov solution
effectively stopped 100% of all my
attacks against the APIs. Its efficacy lies in
the fact that it determines if the traffic
being ingested into the API is synthetic or
human, prevents APIs from being traced
and reverse engineered, implements
channel hardening (dynamic pinning),
and allows only authentic apps to make
API calls. Had all of these companies
implemented Approov, these attacks
wouldn’t have been possible. For more
information on Approov, please contact
the sponsors of this research at
https://www.approov.io

A video containing the results of this
research is available at
https://alissaknight.co/hacking_mhealth_
trailer

53 ALL THAT WE LET IN

SOURCES
[1] Research 2 Guidance, & Nikolova, S. (2017). 84,000 health app publishers in 2017 –
Newcomers differ in their go-to-market approach.
https://research2guidance.com/84000-health-app-publishers-in-2017/

[2] Aite Group, & Knight, A. V. (2019). The Vulnerability Epidemic in Financial Services
Mobile Apps. Digital.ai. https://info.digital.ai/aite-research-financial-mobile-apps.html

[3] Experian, & Stack, B. (2017, December). Here’s How Much Your Personal
Information Is Selling for on the Dark Web. Experian.
https://www.experian.com/blogs/ask-experian/heres-how-much-your-personal-
information-is-selling-for-on-the-dark-web/

[4] World Health Organization. (2011). mHealth New horizons for health through
mobile technologies: Based on the findings of the second global survey on eHealth
(ISBN 978 92 4 156425 0).
http://www.who.int/goe/publications/goe_mhealth_web.pdf

[5] Innovatemedtec. (n.d.). mHealth. Retrieved December 28, 2020, from
https://innovatemedtec.com/digital-health/mhealth

[6] Safavi, K., Accenture, & Kalis, B. (2020, August). Digital Health Consumer Survey
2020 | Accenture. Accenture. https://www.accenture.com/us-
en/insights/health/leaders-make-recent-digital-health-gains-
last?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosvi
tals&stream=top-stories

[7] Gartner Research, Zumerle, D., D’Hoinne, J., & O’Neill, M. (2019, August). API
Security: What You Need to Do to Protect Your APIs (No. G00404900). Gartner
Research. https://www.gartner.com/en/documents/3956746/api-security-what-you-
need-to-do-to-protect-your-apis

54HACKING 30 MOBILE HEALTH APPS AND APIS

https://research2guidance.com/84000-health-app-publishers-in-2017/
https://info.digital.ai/aite-research-financial-mobile-apps.html
https://www.experian.com/blogs/ask-experian/heres-how-much-your-personal-information-is-selling-for-on-the-dark-web/
https://www.accenture.com/us-en/insights/health/leaders-make-recent-digital-health-gains-last?utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosvitals&stream=top-stories
https://www.gartner.com/en/documents/3956746/api-security-what-you-need-to-do-to-protect-your-apis

SOURCES
[8] Penetration Testing Lab. (2017, February 6). Reverse Engineering Android
Applications. https://pentestlab.blog/2017/02/06/reverse-engineering-android-
applications/

[9] Bresnick, J. (2017, July 17). 4 Basics to Know about the Role of FHIR in
Interoperability. HealthITAnalytics. https://healthitanalytics.com/news/4-basics-to-
know-about-the-role-of-fhir-in-interoperability

[10] Dawson, M., Burrell, D. N., Rahim, E., & Brewster, S. (2009, December). Integrating
Software Assurance into the Software Development Life Cycle (SDLC).
https://www.researchgate.net/publication/255965523_Integrating_Software_Assuran
ce_into_the_Software_Development_Life_Cycle_SDLC

[11] Cloud Security Alliance. (2020, July). The Six Pillars of DevSecOps: Automation.
https://cloudsecurityalliance.org/artifacts/devsecops-automation/

[12] Rowley, J. (2020, July 21). What is Certificate Pinning? DigiCert.
https://www.digicert.com/dc/blog/certificate-pinning-what-is-certificate-pinning/

[13] Auth0. (n.d.). Auth0 Documentation: Authorization. Auth0 Documentation.
Retrieved January 6, 2021, from https://auth0.com/docs/authorization

55 ALL THAT WE LET IN

https://pentestlab.blog/2017/02/06/reverse-engineering-android-applications/
https://healthitanalytics.com/news/4-basics-to-know-about-the-role-of-fhir-in-interoperability
https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_Cycle_SDLC
https://cloudsecurityalliance.org/artifacts/devsecops-automation/
https://www.digicert.com/dc/blog/certificate-pinning-what-is-certificate-pinning/
https://auth0.com/docs/authorization

ABOUT THE AUTHOR

Alissa Knight is a partner at Knight Ink and
blends influencer marketing, content
creation in writing and video production,
go-to market strategies, and strategic
planning for telling brand stories at scale
in cybersecurity.

She achieves this through ideation to
execution of content strategy,
storytelling, and execution of influencer
marketing strategies that take
cybersecurity buyers through a brand’s
custom curated journey to attract and
retain them as long-term partners.

Alissa is a published author, having
published the first book on hacking
connected cars and is working on a new
series of books into hacking and securing
APIs and microservices.

56HACKING 30 MOBILE HEALTH APPS AND APIS

ABOUT KNIGHT INK

Firm Overview
Knight Ink is a content strategy, creation,
and influencer marketing agency founded
for category leaders and challenger
brands in cybersecurity to fill current
gaps in content and community
management. We help vendors create
and distribute their stories to the market
in the form of written and visual
storytelling drawn from 20+ years of
experience working with global brands in
cybersecurity. Knight Ink balances
pragmatism with thought leadership and
community management that amplifies a
brand’s reach, breeds customer delight
and loyalty, and delivers creative
experiences in written and visual content
in cybersecurity.

Amid a sea of monotony, we help
cybersecurity vendors unfurl, ascertain,
and unfetter truly distinct positioning
that drives accretive growth through
amplified reach and customer loyalty
using written and visual experiences.

Knight Ink delivers written and visual
content through a blue ocean strategy
tailored to specific brands. Whether it’s a
firewall, network threat analytics
solutions, endpoint detection and
response, or any other technology, every
brand must swim out of a red sea of
competition clawing at each other for
market share using commoditized
features. We help our clients navigate to
blue ocean where the lowest price or
most features don’t matter.

We work with our customers to create a
content strategy built around their blue
ocean then perform the tactical steps
necessary to execute on that strategy
through the creation of written and visual
content assets unique to the company
and its story for the individual customer
personas created in the strategy setting.

Contact Us
Web: www.knightinkmedia.com
Phone: (702) 637-8297
Address: 1980 Festival Plaza Drive, Suite
300, Las Vegas, NV 89135

57 ALL THAT WE LET IN

Knight Ink
1980 Festival Plaza Drive
Suite 300
Las Vegas, NV 89135
ak@knightinkmedia.com

